
A High-Performance Global Named Information System

Sape Mullender, Jim McKie, Jeff Napper, Jan Sacha

Bell Labs

1. Named Information
Information has always been named, but the naming
mechanism usually involved alocation, for instance,
the domain name of the server publishing the infor-
mation. There is a lot of research a the moment in
the area of Named-Information systems:
Information-Centric Networks (ICN), Content-
Centric Networks (CCN), Named-Data Networks
(NDN), as well is into Content-Delivery Networks
(CDNs) that looks into using the name of an object
to map it to a nearby cached copy, plus, of course,
the algorithms for deciding just what information to
cache and where to do that.

The research mentioned could be described as
research that attempts to integrate information
communicationand storage. In this position paper,
we plead to integrate this with informationcreation
or generationas well and to apply it not only to dis-
tributed systems in general but to exascale systems
in particular.

Searching for web pages with certain keywords in
them can only be done by servers in the network.
But information that is expensive to generate (a
weather forecast, for example), tends to be generated
once, proactively, and then to be distributed by
CDNs. In other words, we either have distributed
applications for generating information,or CDNs for
delivering pre-generated information. The integra-
tion of the two, for information that can either be
delivered from storage or generated on demand
(depending on the cost of fetching it vs. the cost of
generating it) has scarcely been investigated.

2. Information Systems
Imagine a global system in whichnamingthe infor-
mation triggers the mechanisms that deliver it. Such
mechanisms include information generation, cach-
ing, transportation, as well as the management of

privacy and integrity. Not all information is accessi-
ble to anyone and not all information can be pro-
vided by just anyone. Moreover, there must be
mechanisms to manage timely delivery, consistency
of replicated information (i.e., change management)
and more.

We conjecture a new protocol stack for named
information management in which the waist of the
protocol hourglass addresses (1) the name space, (2)
operations on information (create/delete,
read/update) and (3) access control (who can do
what). Below this layer are the mechanisms for
authentication, transport, data encryption, informa-
tion location and more. Above the waist are the
ways in which information is interpreted, how and
where information is replicated or cached, and how
fault-tolerance parameters are managed.

Basically, the waist of the hourglass is a protocol
that describes the exchanges between a client seeking
to obtain or update information managed by a server.
A cachecan be viewed as an agent presenting itself
to the client as a server and to another cache, a file
system, or a server process as a client. The protocol
manages the information exchanges as well as the
mechanisms for maintaining consistency, performing
access control and managing timely data delivery.

The protocol is reminiscent of the protocols used
for clients accessing remote file systems and this is
not entirely accidental: file I/O is something we
know how to do and it’s been used as the driving
model in Unix: processes look like files (viapipes),
devices look like files and some services are pre-
sented as files (e.g.,/proc). It’s a familiar model
that we know how to use. Moreover, it’s already
part and parcel of most of the applications we run.

Adapting it to high-performance environments, to
transatlantic communication, to interactive commu-
nication and to dynamically generated content is a



- 2 -

challenge that we address using two important proto-
col components:

1. A sessionis established between communicating
entities. It captures thestateshared by the partici-
pants: identity/authenticity of the participants,
context for naming information (keeping the
names that need to be exchanged short) operations
in progress. A session can be established once
and used for the duration of a running application
or a client-server relationship.

2. A transport connection is established for
exchanging names and information between par-
ticipants. Each connection belongs to asession;
sessions can have zero, one of many connections
at any given moment.
Disruptions in communication due to address

changes can be dealt with at session level: a new
connection is established in the existing session and
communication state can be recovered from the ses-
sion. Authentication handshakes on new connec-
tions are usually not needed because pre-established
keys can be reused.

The mechanism used to communicate in a connec-
tion will depend on the proximity of the participants:
two cores on the same processor might use shared
memory, while processes on either side of the
Atlantic will use IP. The session allows connections
to be established in the most efficient manner each
time a participant migrates� or is restarted from a
checkpoint after a failure.

The information-oriented network’s equivalent of
a conventional network’s data multicast iscontent
distribution, giving a whole new meaning tostore-
and-forwardin content-delivery systems.

The protocol at the waist of the hourglass, first
and foremost, needs to be capable of getting the job
done: content distribution, publish/subscribe applica-
tions, or consistent distributed data management via
a network of caches and storage servers; addressing
distributed or centralized services in order to make
them generate or transform information; dealing with
the demands of data and system security.

3. Relevance to Exascale Computing

Maturity
Many of the communication demands in exascale
computing have parallels in current distributed
applications and CDN systems:

Exascale systems, due to their increasing size,
are becoming much more heterogeneous and data
transport between cores depends on how directly
those cores are connected. The separation of con-
cerns between session and connection allows the
most direct connection to be used while the ses-
sion guards the longer-term concerns of error-
recovery, process migration and authentication.

Exascale applications often need to share data
efficiently, typically through multicast. In the
emerging heterogeneous exascale architectures,
multicast can no longer be done by broadcasting
data on a bus or an Ethernet segment, making the
multicast architecture resemble a content-
distribution network. We consider it a feasible
challenge to model information multicast in exas-
cale applications on the lines for content distribu-
tion without significant loss of efficiency.

Uniqueness and Applicability
Our approach, obviously, is not unique to exascale
systems, but exascale systems are explicitly tar-
geted in the realization that meeting the extreme
performance demands of exascale systems will
benefit other systems as well.

Novelty
Our focus onnamedinformation allows the sys-
tem to be usedas if it were a file system. Natu-
rally, many aspects of the realization are not like
actual file systems at all, but the opportunity pre-
sents itself to make a coupling between, on the
one hand, exascale applications running on exas-
cale operating systems and, on the other, conven-
tional operating systems with conventional file
systems (and conventional synthetic files for I/O
and control).

Experiments are ongoing to model running pro-
cesses as named information, providing methods
for monitoring, controlling, debugging, check-
pointing and migrating processes. This is a new
and very scalable approach to managing applica-
tions consisting of thousands of processes.

Effort
A project at Bell Labs has been underway for
about a year in which the current approach is
being evaluated for embedded and conventional
operating systems. Making the adaptations for
HPC systems and exascale systems is a project
that is expected to take three years and between 8
and 20 person years.


